Regularization matrices determined by matrix nearness problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix Nearness Problems and Applications ∗

A matrix nearness problem consists of finding, for an arbitrary matrix A, a nearest member of some given class of matrices, where distance is measured in a matrix norm. A survey of nearness problems is given, with particular emphasis on the fundamental properties of symmetry, positive definiteness, orthogonality, normality, rank-deficiency and instability. Theoretical results and computational ...

متن کامل

Decomposition Methods for Sparse Matrix Nearness Problems

We discuss three types of sparse matrix nearness problems: given a sparse symmetric matrix, find the matrix with the same sparsity pattern that is closest to it in Frobenius norm and (1) is positive semidefinite, (2) has a positive semidefinite completion, or (3) has a Euclidean distance matrix completion. Several proximal splitting and decomposition algorithms for these problems are presented ...

متن کامل

Matrix Nearness Problems with Bregman Divergences

This paper discusses a new class of matrix nearness problems that measure approximation error using a directed distance measure called a Bregman divergence. Bregman divergences offer an important generalization of the squared Frobenius norm and relative entropy, and they all share fundamental geometric properties. In addition, these divergences are intimately connected with exponential families...

متن کامل

On Matrix Nearness Problems: Distance to Delocalization

This paper introduces two new matrix nearness problems that are intended to generalize the distance to instability and the distance to stability. They are named the distance to delocalization and the distance to localization due to their applicability in analyzing the robustness of eigenvalues with respect to arbitrary localization sets (domains) in the complex plane. For the open left-half pla...

متن کامل

Generalized LASSO with under-determined regularization matrices

This paper studies the intrinsic connection between a generalized LASSO and a basic LASSO formulation. The former is the extended version of the latter by introducing a regularization matrix to the coefficients. We show that when the regularization matrix is even- or under-determined with full rank conditions, the generalized LASSO can be transformed into the LASSO form via the Lagrangian frame...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2016

ISSN: 0024-3795

DOI: 10.1016/j.laa.2015.12.008